Hospital for Sick Children Leading Child Health Research

The Medical Technology Blog

Sick Kids takes centre stage in robotics, imaging and simulation technology development

At first glance, a first time visitor to the Hospital for Sick Children, or “SickKids” as it’s more commonly known, could be forgiven for thinking that they were in a plush shopping centre rather than a major specialist paediatric hospital. Indeed, it has all the trappings of coffee bars, food outlets and such forth.  The downtown Toronto-based hospital is a sprawling campus of old and new buildings, colourful furniture and equipment, and boasts one of only three medical centres in the city equipped with a helipad.

Centre for Image Guided Innovation & Therapeutic Innovation

Somehow, the combination seems to works because the hospital has grown rapidly to become Canada’s largest centre for child health research. Supporting this strategy has been the Centre for Image Guided Innovation & Therapeutic Innovation (CIGITI), which was set up at SickKids in 2009 and, as part of a public/private partnership is developing three technologies with paediatric and foetal applications:, namely minimally-invasive endoscopic manipulators, a natural orifice anastomotic device and MR-guided high-intensity focused ultrasound.

In the case of the KidsArm technology development, the public contribution comes in the form of research and clinical expertise (SickKids) and government-based funding, whilst the private sector contribution encompasses contributing robotics (MDA Corporation), imaging (Philips Healthcare) and simulation (L-3 Communications MAPPS) technology.

The ambition for KidsArm can hardly be described as modest. The goal is for the technology to effectively to secure a position as a world leader in robotic surgery and imaging. Billed as the first robotic surgical arm for paediatric imaging, the device allows surgeons to navigate to a specific treatment area without impacting upon structures such as blood vessels. It could also be used to perform procedures such as the suturing of vessels and tissues at a rate of at least ten times faster than a surgeon.

The surgical platform is intended for use across all key surgical specialties, including cardiac, foetal, urosurgery/general surgery and neurosurgical areas. The device also has the benefit of producing virtual reality-based models that can be used in planning and teaching.

As with all high-profile technological breakthroughs, CIGITI has not got a clear field in terms of competitors, which include the likes of Intuitive Surgical, which has emerged in recent times as a leader in robotic technology through its DaVinci system. Still, confidence in the KidsArm’s attributes is strong and in a presentation to analysts, CIGITI isn’t afraid of holding back on a direct head on comparison with Intuitive Surgical.

First up, CIGITI says the KidsArm is markedly smaller and lighter than that from Intuitive, and that its device will be much cheaper and adaptable than its rival. As the KidsArm device is specifically targeted for paediatric use, it can also be used for any procedures that require minimal inversion. In contrast, Intuitive’s technology stands accused of being too large for paediatric use and limited to urological applications. Other technology standouts for KidsArm include built-in telesurgery and imaging guidance initially focused on MRI.

Unlike Intuitive, development of CIGITI’s technology is still at the relatively embryonic stage, although a clinical working model is expected to emerge within two years. Backed by C$10 million in funding awarded by the Canadian government in 2010, Phase I of the programme, which started in 2009, has been focused on the development of technological innovations such as in the areas of advanced complex surgical delivery, mulit-modality fusion and real-time image guidance and creation of surgical simulation models.

Whilst this process is still continuing throughout 2012, Phase II of the programme, which started in 2011 and will last two years, involves a critical analysis of the KidsArm technology. This includes a review of minimally-invasive surgery (MIS) vs robotic surgery, a look at fusion and real-time image-guidance and improving the accuracy of the surgical system and simulation modules. Analysis will also be carried out at high-frequency imaging for foetal intervention procedures. All this work, if it continues to impress, is likely to lead to commercial and clinical opportunities for the technology from 2014 onwards.

So why is a hospital taking such an active role in product development and when it’s primary role is providing healthcare provision? Aside from the revenue earning potential of creating IP assets that can be licensed or used for start-up companies, the collaboration stands to general high-end manufacturing jobs, healthcare and research opportunities and substantially improve education available from school students and rising all the way up to medical staff, both in Canada and the province of Ontario.

For SickKids, such efforts help to improve patient care and the quality of healthcare provided by the institution by introducing novel image-guided tools into the paediatric setting. So far, in just two years, SickKids/CIGITI has created a number of positions across all levels of academia, filed for three patents covering surgical tools (including one for KidsArm), secured C$25.8 million in research funding, signed a licensing agreement with Medical Modeling relating to patient-specific cranial facial models and templates and forged tentative links with venture capitalists.

Article source: Medical Industry Week – supplied by Lawrence Miller, editor.




Espicom Business Intelligence

European Commission Investigates Synthes Takeover

The Medical Technology Blog

European regulatory authority casts an eye over Johnson & Johnson’s Synthes takeover

The European Commission (EC) has opened an in-depth investigation into the planned acquisition of Synthes by fellow orthopaedic company, Johnson & Johnson. The EC now has until 19th March 2012 to take a final decision on whether the transaction would reduce effective competition in the EEA.

The investigation has been prompted by concerns in Europe that the proposed acquisition would remove a competitor from some markets that are already concentrated. An initial investigation showed that the proposed transaction would combine two of the leading suppliers of spine devices and would strengthen the position of Synthes as the current market leader in trauma and CMF devices and of J&J in shoulder devices in a substantial number of EEA member states. The EC also has concerns that the remaining competitors in many of the markets may not be able to exert sufficiently strong competitiveness with the merged entity. The removal of Synthes may also have a negative impact on the level of innovation, leading to a reduction of choice for patients and potentially an increase in prices for the orthopaedic medical devices concerned. Consequently, at this stage, the acquisition raises “serious doubts” as to its impact on competition.

Synthes accepted a US$21.3 billion takeover offer from J&J in April 2011. The deal, which has a target completion date of mid-2012, would make J&J’s DePuy arm the largest orthopaedic device manufacturer in the world.




Espicom Business Intelligence

FDA steps up bid to drive innovation in healthcare

The Medical Technology Blog

The FDA has handed over an award of US$2 million…

…to support two regional ‘Centres of Excellence in Regulatory Science and Innovation’ (CERSI) in the US. The centres, which will be located at the University of Maryland and Georgetown University, will focus on strengthening science and training needed to modernise and improve the ways drugs and medical devices are reviewed and evaluated.

In August 2011, the agency released the strategic plan for “Advancing Regulatory Science at FDA”, the main focus of which was to accelerate delivery of new medical treatments to patients, improve paediatric health, protect against emerging infectious diseases and terrorism, enhance safety and health through informatics, protect the food supply, modernise safety testing and meet the challenges of regulation. More recently, in October, the agency announced a related initiative, “Driving Biomedical Innovation: Initiatives for Improving Products for Patients”. This plan focuses on “continuing dialogue with companies, innovators, patients and other stakeholders to identify barriers to progress and better define what steps need to be taken to overcome any obstacles to innovation”.

Working with FDA scientists, CERSI researchers will assist the FDA in driving innovation in medical product development as well as in advancing laboratory, population, behavioural and manufacturing sciences. The agency chose to pilot the CERSIs in Washington, DC, to allow for the greatest possible face-to-face collaboration and training with FDA staff.

Thanks to Sophie Bracken for this article, Sophie is editor of Espicom’s business publication Drug Delivery Insight.


Mouse here for
Related Links



Espicom Business Intelligence

Biologic Therapies bursts onto orthobiologics scene

The Medical Technology Blog

Welcome back to the Medical Technology Blog. We start off the week with an article from the orthopaedics business, please read on…

A new company has been propelled into the orthobiologics industry as the result of a joint venture between device firms Scorpion Medical and Monet Medical. Dubbed Biologic Therapies, the new company will focus on the design, development and manufacture of components for the biologics sector of the medical device industry.

Orthobiology is the inclusion of biology and biochemistry in the development of bone and soft tissue replacement materials for skeletal and tissue healing. Biologic Therapies  will  attempt to take this process to a new level by creating ‘Autologous Orthobiologic Therapy’. The company believes it can use the body’s own stem cells to increase the healing potential and provide quicker restoration of function within muscle, tendon, ligament, bone and cartilage, said Dr R Wade McKenna, owner and operator of Monet Medical and  by an orthopaedic surgeon. Biologic Therapies will be led by President Steve Bales, a former employee of DePuy and Encore Medical.

McKenna’s autologous biologic therapy (bone marrow aspirate stem cells) treatments are designed to augment overall healing and improve surgical and non-surgical results. The treatments are for ligamentous injuries involving the knee, ankle and elbow. Treatments in the knee include ACL, MCL and LCL injuries. In the elbow, stem cells are used successfully to treat acute and chronic medial and lateral epicondylitis. Ligamentous injuries around the ankle are referred to as sprains but can often represent significant tears to the stabilising structures of the ankle. Autologous biologic therapy is used around the ankle in chronic and acute sprains to shorten the recovery time and improve the quality of healing tissue.

As its first product offering, Biologic Therapies is actively working to bring to market a new, patented device for accessing a patient’s own stem cells through the safe and painless harvest of bone marrow. This device is scheduled for market release during the first quarter of 2012. The company believes this device is unlike anything currently available and expects it could become the “gold-standard” for use in stem cell harvesting procedures.

Closely following the stem cell harvesting device will be a range of implant systems for fracture fixation, which will include the ability to introduce stem cells precisely at the fracture site. In addition, Biologic Therapies intends to create a strategic initiative to broaden the training and product support by offering an educational element to surgeons and healthcare professionals. The educational programme will aim to enhance the awareness and efficacy of this emerging technology as well as share Biologic Therapies’ surgical protocols designed to increase the success rate of autologous orthobiologic therapies.

Thanks to Sophie Bracken for providing this article, Sophie edits Espicom’s business publication Orthopaedics Business News.




Espicom Business Intelligence
The Medical Technology Blog

The weekend’s nearly here and we finish off with an article from Orthopaedic Business News by Espicom’s medical news editor Sophie Bracken.

CellSonic Medical, an India and UK-based developer and manufacturer of machines and consumables for wound healing, orthopaedic, urology and skin care in the medical, veterinary and cosmetic markets, is looking for worldwide distributors for its products, which span the areas of lithotripsy, urology, surgery, laparoscopy and dermatology, and also include cosmetic creams and gels. All of CellSonic’s products possess CE mark approval.

The CellSonic medical device is a lithotripter with variable power for use in hospitals and clinics to treat bones, wounds and sports injuries. The device produces a shockwave that is focused by the parabola in the head. According to CellSonic, the company has miniaturised the lithotripter, making it “safe, reliable, easy to use and reduced to price to reach a worldwide market for wound healing”. Calcified shoulder is the most commonly treated condition with shockwaves. Tennis and golfer’s elbow are also commonly treated with the technique. A power boost can be provided for machines that require a bone-healing facility.

According to CellSonic, its system can cost half that of electro-magnetic machines and claims to be cheapest in the medical, veterinary and cosmetic markets. The distributor will exclusively offer CellSonic’s full range and undertake all sales functions.

Have a great weekend, thanks for reading, Paul.



Espicom Business Intelligence
The Medical Technology Blog

DePuy, A Johnson & Johnson Company logo
Image via Wikipedia

A warm welcome back to The Medical Technology Blog.

Newcastle University’s bioengineering team has made a bid for some of the credit in helping to persuade Johnson & Johnson‘s DePuy Orthopaedics unit to recall its Articulating Surface Replacement (ASR) hip prosthesis from the market.

The researchers,  led by Dr Tom Joyce, began investigating the ASR hip prosthesis as far back as February 2008, and discovered a number of failings in the design of the implant and offered an explanation into how and why the metal joint was being worn away, releasing high levels of toxic metals into the patient’s bloodstream. The subsequent recall means that thousands of patients – estimated at 93,000 worldwide, are being recalled in an effort to determine the extent of the problem and offer support to those who have been left with the crippling side-effects. According to DePuy, “very few” of the ASR devices remain on the worldwide market, following the company decision in 2009 that it would be discontinuing the ASR system as a result of “declining demand and the intention to focus on the development of next generation hip replacement and resurfacing technologies that best meet the needs of surgeons and patients.”

Joyce explained: “The thinking was that a metal-on-metal ball and socket joint should be far more effective and hard-wearing for patients than the older style metal-on-polymer system where the softer polymer tended to wear away quite quickly, releasing particles and eventually causing the artificial joint to fail. What our research showed was that if the ball and socket were not perfectly aligned then the metal wore away quite vigorously – the initially ultra-smooth surfaces roughening and then grinding away against each other – to release nano-sized particles into the body that were then absorbed into the bloodstream and tissues, causing far greater damage.” According to Joyce, only in a minority of cases were the joints actually functioning correctly.

Concerns first began to arise when a number of patients reported groin pain, some not long after their arthritic hips had been replaced with ASR prostheses. Working with orthopaedic surgeon David Langton, based at North Tees University Hospital and now working towards a PhD in Bioengineering under the supervision of Joyce, the NU team studied over 100 explanted hip joints sent to them from across Europe. Blood tests revealed high levels of cobalt and chrome ions in the blood stream of ASR patients. The ASR is made from cobalt-chrome alloy so this implicated the artificial hip. Using a “state-of-the-art” machine, the team studied the surface of the artificial hip joints and found that instead of being highly polished with a mirror-like surface, the failed devices had become roughened. This caused the lubrication of the joint to fail so that, with each step, the patient was producing relatively high volumes of metallic wear debris.

The ASR device formed part of a class of large diameter, monoblock hip resurfacing and replacement devices often selected by surgeons for younger patients who may benefit from a more stable device that can reduce the chances of dislocation after surgery. The DePuy ASR hip resurfacing system was introduced in 2003 and is only approved for use outside of the US, whilst the ASR XL acetabular system was first launched in 2004 and has been available worldwide.

DePuy, like its peers in the industry, will look back on this chapter in the history of hip replacement and hope to learn its lessons. For one thing, sometimes a development that appears to be successful and the answer to a major problem may not necessarily work out all so wonderful in reality over time. The industry has also had to trade off the benefits of technology with its failings, but recalls such as those from DePuy and Zimmer are inevitably going to make it much more difficult to convince surgeons and and potential patients that future technologies won’t suffer the same fate in the future. It is also likely to lead to much more stringent and expensive clinical trial programmes, and further regulatory scrutiny.

Thanks to Lawrence Miller for this post, Lawrence is the medical newsletters team leader and managing editor of Medical Industry Week and Orthopaedics Business

More to come this week, drop back soon, thanks, Paul.

Related articles by Zemanta



Espicom Business Intelligence

Web Hosting by HostGator